Modulating molecular structures and dielectric transitions in organic–inorganic hybrid crystals†
Abstract
In this paper, three new hybrid phase transition compounds, [Hmpy]CdBr3 (1, Hmpy = N-methylpyrrolidinuium cation), [Hmpy]2CdBr4 (2) and [Hmpy]3CdBr3·CdBr4 (3), were synthetized by means of regulating the ratio of reactants. Systematic characterizations consisting of variable temperature X-ray single crystal diffraction, differential scanning calorimetry (DSC) and dielectric measurements reveal that 1 with infinite one-dimensional (1D) [CdBr3]n− chains undergoes a phase transition around 278 K; 2 with isolated [CdBr4]2− tetrahedrons exhibits a high-temperature phase transition close to 367 K, accompanied by prominent switchable dielectric behavior. Interestingly, 1D [CdBr3]n− chains and isolated [CdBr4]2− tetrahedrons both exist in 3, associated with a phase transition at 320 K. The phase transitions in the three compounds are originated from the order-disorder transitions of the Hmpy cation. It is expected that our finding would promote the development of hybrid dielectric transition materials with adjustable properties.