Issue 68, 2017

Antiferroelectric to relaxor ferroelectric phase transition in PbO modified (Pb0.97La0.02)(Zr0.95Ti0.05)O3 ceramics with a large energy-density for dielectric energy storage

Abstract

(Pb0.97(1+x)La0.02)(Zr0.95Ti0.05)O3 (PLZT2/95/5) ceramics with excess lead content (x = 0, 3%, 5%, 7.5%, 10% and 15%) were successfully prepared via a solid-state reaction route. X-ray diffraction analysis indicated that a pure perovskite structure was obtained for all compositions. The effects of excess lead content on the microstructure, dielectric properties, and energy-storage performance of PLZT2/95/5 ceramics were systematically investigated. The ceramics exhibited tetragonal phase structures and showed two dielectric peaks at 120 and 240 °C, corresponding to antiferroelectric–ferroelectric and ferroelectric–paraelectric phase transitions. The recoverable energy-storage density calculated from hysteresis loops reached about 2.12 J cm−3 with an efficiency of 92.98%, which was due to the phase transition from the antiferroelectric state to the relaxor ferroelectric state. Based on these results, typical PLZT2/95/5 ceramics with different lead excess content have been studied, which could be potential candidates for applications in high energy storage-density electrical capacitors.

Graphical abstract: Antiferroelectric to relaxor ferroelectric phase transition in PbO modified (Pb0.97La0.02)(Zr0.95Ti0.05)O3 ceramics with a large energy-density for dielectric energy storage

Article information

Article type
Paper
Submitted
04 Aug 2017
Accepted
23 Aug 2017
First published
07 Sep 2017
This article is Open Access
Creative Commons BY license

RSC Adv., 2017,7, 43327-43333

Antiferroelectric to relaxor ferroelectric phase transition in PbO modified (Pb0.97La0.02)(Zr0.95Ti0.05)O3 ceramics with a large energy-density for dielectric energy storage

B. Li, Q. Liu, X. Tang, T. Zhang, Y. Jiang, W. Li and J. Luo, RSC Adv., 2017, 7, 43327 DOI: 10.1039/C7RA08621K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements