Issue 46, 2017

Waste activated sludge (WAS) dewatering properties of an original hydrophobically modified polyacrylamide containing a cationic microblock structure

Abstract

Chemical conditioning, as one of the core technologies used for the dewatering pretreatment of sludge, can efficiently improve the dewaterability of WAS and hence reduce the expense of the transportation and disposal of WAS. Cationic polyacrylamide has been widely utilized as a chemical conditioner owing to its high performance and economic advantages. However, high-performance and economical flocculants are still needed. In this study, a novel hydrophobically associating polyacrylamide, which was denoted as TPADL and contained a cationic microblock structure synthesized by a UV-initiated template copolymerization technique, was employed in a dewatering test on WAS. The chemical composition of TPADL was confirmed via hydrogen nuclear magnetic resonance (1H NMR) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Moreover, 1H NMR spectroscopy demonstrated a highly concentrated distribution of cations on the main chain. Furthermore, thermogravimetric analysis (TGA) was utilized to investigate the thermal stability of TPADL, and its apparent viscosity was also measured to evaluate its rheological characteristics. Dewatering tests found that the TPADL flocculant exerted a synergistic function owing to the cationic microblock structure and hydrophobic association and exhibited superior dewatering performance in comparison with normal random cationic polyacrylamide (CPAM). The filter cake moisture content (FCMC) and specific resistance to filtration (SRF) reached 64.98% and 1.3 × 1012 m kg−1, respectively, for TPADL at the optimal dosage of 1.5 mg g−1 dry solids of WAS (calculated value). The floc size distribution revealed that hydrophobic association remarkably increased the floc size owing to enhancements in bridging absorption ability, whereas the cationic microblock structure helped form a denser and more compact floc structure, and the higher charge neutralization ability enabled an increase in floc strength. In addition, the synergistic function significantly improved the regeneration ability of flocs. Scanning electron microscopy (SEM) analysis indicated that the stronger floc structure could act as a skeleton to form pores and a channel-like structure, which made filter cake a favorable draining medium for the release of water and thus contributed to an increase in dewaterability. This study provided an analysis for the development of high-performance and economic flocculants by a combination of the controllable concentrated distribution of cations and hydrophobic association.

Graphical abstract: Waste activated sludge (WAS) dewatering properties of an original hydrophobically modified polyacrylamide containing a cationic microblock structure

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
11 Mar 2017
Accepted
10 May 2017
First published
31 May 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 28733-28745

Waste activated sludge (WAS) dewatering properties of an original hydrophobically modified polyacrylamide containing a cationic microblock structure

Y. Zhou, H. Zheng, B. Gao, Y. Gu, X. Li, B. Liu and A. M. Jiménez, RSC Adv., 2017, 7, 28733 DOI: 10.1039/C7RA02939J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements