Issue 40, 2017

Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression

Abstract

To improve the yield of industrial fermentation, herein, we report a method based on Fourier-transform near-infrared spectroscopy (FT-NIR) to predict the growth of yeast. First, the spectra were obtained using an FT-NIR spectrometer during the process of yeast cultivation. Each spectrum was acquired over the range from 10 000 to 4000 cm−1, which resulted in spectra with 1557 variables. Moreover, the optical density (OD) value of each fermentation sample was determined via photoelectric turbidity method. Then, using a method based on competitive adaptive reweighted sampling (CARS), characteristic wavelength variables were selected from the preprocessed spectral data. Gaussian mixture regression (GMR) algorithm was employed to develop the prediction model for the determination of OD. The results of the model based on GMR were achieved as follows: only 13 characteristic wavelength variables were selected by CRAS, the coefficient of determination Rp2 was 0.98842, and the root mean square error of prediction (RMSEP) was 0.07262 in the validation set. Finally, compared to kernel partial least squares regression (KPLS), support vector machine (SVM), and extreme learning machine (ELM) models, GMR model showed excellent performance for prediction and generalization. This study demonstrated that FT-NIR spectroscopy analysis technology integrated with appropriate chemometric approaches could be utilized to monitor the growth process of yeast, and GMR revealed its superiority in model calibration.

Graphical abstract: Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression

Article information

Article type
Paper
Submitted
07 Mar 2017
Accepted
24 Apr 2017
First published
10 May 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 24988-24994

Quantitative analysis of yeast growth process based on FT-NIR spectroscopy integrated with Gaussian mixture regression

W. Wang, H. Jiang, G. Liu, Q. Chen, C. Mei, K. Li and Y. Huang, RSC Adv., 2017, 7, 24988 DOI: 10.1039/C7RA02774E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements