Issue 36, 2017, Issue in Progress

Regeneration of dental–pulp complex-like tissue using phytic acid derived bioactive glasses

Abstract

Phytic acid derived bioactive calcium phosphosilicate (PSC) glasses with a high phosphate content were synthesised by using non-toxic phytic acid as a phosphorus precursor. This study aimed to verify the effects of PSC on the odontogenic differentiation and dentin–pulp complex-like tissue regeneration of dental pulp cells (DPCs). Nitrogen adsorption, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, pH measurement, and inductively coupled plasma optical emission spectroscopy analyses were performed to characterise PSC. Classical 45S5 bioactive glasses (45S5) were used as positive control. Cell proliferation (1, 3, 5, 7 and 9 days), odontogenic-related gene expression levels (3 and 7 days) and mineralisation ability (21 days) of human DPCs (hDPCs) were evaluated with methylthiazol tetrazolium assay, real-time polymerase chain reaction and alizarin red staining after hDPCs from third molars were treated with PSC or 45S5 extractions. Rat molar crowns with pulp tissues covered by PSC or 45S5 were transplanted subcutaneously into nude mice for 2 and 6 weeks to demonstrate their biological effects in vivo. Results revealed that the specific surface area of PSC was larger than that of 45S5. The PSC also induced hydroxycarbonate apatite precipitation earlier than 45S5. pH was slightly increased when the amount and dissolution time of PSCs were increased. By comparison, pH was remarkably increased by 45S5. The amounts of Si and P ions released by PSC (0.1 mg mL−1) were larger than those released by 45S5. Cell proliferation, mRNA expression levels of dentin sialophosphoprotein, dentin matrix protein 1 and osteocalcin and mineralisation of hDPCs were also more strongly promoted by PSC than by 45S5. In vivo, the amount of induced typical dentin-like tissues with odontoblast-like cells generated on the interface between materials and pulp tissues was higher in PSC than in 45S5. Only collagen-like tissues were observed in groups without bioactive glasses. These findings suggested that PSC enhanced the odontogenic differentiation of DPCs and dentin–pulp complex-like tissue regeneration. The PSC might be a potential candidate for vital pulp preservation and regeneration of the dentin–pulp complex.

Graphical abstract: Regeneration of dental–pulp complex-like tissue using phytic acid derived bioactive glasses

Supplementary files

Article information

Article type
Paper
Submitted
05 Feb 2017
Accepted
07 Apr 2017
First published
20 Apr 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 22063-22070

Regeneration of dental–pulp complex-like tissue using phytic acid derived bioactive glasses

C. Cui, S. Wang, H. Ren, A. Li, D. Qiu, Y. Gan and Y. Dong, RSC Adv., 2017, 7, 22063 DOI: 10.1039/C7RA01480E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements