Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 31, 2017, Issue in Progress
Previous Article Next Article

Promotional effect of lanthana on the high-temperature thermal stability of Pt/TiO2 sulfur-resistant diesel oxidation catalysts

Author affiliations

Abstract

In order to efficiently remove diesel exhaust pollutants during long-term application under high temperature conditions, enhancing the thermal stability of catalysts is essential. Here, lanthana was introduced into a TiO2 sulfur-resistant support via co-precipitation, and then a Pt/TiO2–La2O3 diesel oxidation catalyst (DOC) was prepared using the impregnation method. The SO2 uptake and EDX results indicate that the La2O3-doped Pt/TiO2–La2O3 catalyst displays superior sulfur resistance compared to the commercial Pt/Al2O3 and Pt–Pd/CeO2–ZrO2–Al2O3 DOC catalysts. Catalytic performance measurements showed that the as-prepared Pt/TiO2–La2O3 catalyst exhibited significantly better activity than Pt/TiO2 after high-temperature thermal aging and simulative 160 000 km vehicle aging. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N2 adsorption–desorption results suggest that some of the La3+ dopant ions migrated to the grain boundary of the TiO2 crystal and other La3+ ions replaced Ti4+ ionic sites to form Ti–O–La bands, which impeded the crystal growth and phase transition of TiO2, and hence mitigated the destruction of the porous texture of TiO2. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) observations further demonstrate that the introduction of lanthana into TiO2 suppressed Pt particle agglomeration and catalyst particle sintering, consequently enhancing the thermal stability of the Pt/TiO2–La2O3 catalyst. Thus, this work shows that lanthana can play an extremely important role in improving the structural and textural stability of TiO2 and stabilizing the surface-active component of the Pt/TiO2 DOC catalyst, hence enhancing the high-temperature aging resistance.

Graphical abstract: Promotional effect of lanthana on the high-temperature thermal stability of Pt/TiO2 sulfur-resistant diesel oxidation catalysts

Back to tab navigation

Supplementary files

Article information


Submitted
14 Jan 2017
Accepted
23 Mar 2017
First published
31 Mar 2017

This article is Open Access

RSC Adv., 2017,7, 19318-19329
Article type
Paper

Promotional effect of lanthana on the high-temperature thermal stability of Pt/TiO2 sulfur-resistant diesel oxidation catalysts

Z. Yang, N. Zhang, Y. Cao, Y. Li, Y. Liao, Y. Li, M. Gong and Y. Chen, RSC Adv., 2017, 7, 19318
DOI: 10.1039/C7RA00582B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements