Issue 20, 2017

Spectroscopic and thermodynamic investigations of clathrate hydrates of methacrolein

Abstract

This study characterized new structure II (sII) clathrate hydrates, consisting of 136 H2O molecules with 8 large 51264 cages and 16 small 512 cages, with methacrolein for the first time. The crystal structure and guest distributions of binary (methacrolein + gaseous guests) clathrate hydrates were identified using spectroscopic tools, namely powder X-ray diffraction (PXRD) and Raman spectroscopy. The PXRD and Raman results showed that the inclusion of methacrolein and gaseous guests including CH4, N2, O2 or CO2 could be monitored in the large and small cages of sII hydrates, respectively. The conformation of methacrolein in the large cages of sII hydrates was also analyzed via Raman spectroscopy, revealing an s-trans conformer of methacrolein in the large cages of sII hydrates. High-resolution powder diffraction (HRPD) and Raman spectroscopy were also used to identify the dissociation of binary (methacrolein + CH4) clathrate hydrate, showing that it was almost completely dissociated at 200 K. Finally, we measured the equilibrium conditions of four phases, clathrate hydrates, liquid water, liquid methacrolein, and the vapour phase, to check the thermodynamic stability of binary (methacrolein + gaseous guest) clathrate hydrates. The phase equilibria of binary (methacrolein + CH4, N2, or O2) clathrate hydrates showed that the addition of methacrolein to the hydrate phase increased the hydrate stability with a higher hydrate dissociation temperature when compared to the hydrate stability of pure (CH4, N2, or O2) clathrate hydrates. The thermodynamic stability of binary (methacrolein + CO2) clathrate hydrate exhibits a higher hydrate dissociation temperature when compared with that of the pure CO2 clathrate hydrate below 279 K.

Graphical abstract: Spectroscopic and thermodynamic investigations of clathrate hydrates of methacrolein

Article information

Article type
Paper
Submitted
20 Dec 2016
Accepted
10 Feb 2017
First published
21 Feb 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 12359-12365

Spectroscopic and thermodynamic investigations of clathrate hydrates of methacrolein

Y. Ahn, Y. Youn, M. Cha and H. Lee, RSC Adv., 2017, 7, 12359 DOI: 10.1039/C6RA28434E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements