Issue 34, 2017, Issue in Progress

Restriction of telomerase capping by short non-toxic peptides via arresting telomeric G-quadruplex

Abstract

The stabilization of a G-quadruplex structure in human telomeric DNA has become a promising strategy in the development of cancer therapeutics. Here, we report FK13 (a small fragment of human cathelicidin peptide LL37, residues 17–29) and its mutant peptides (KR12A, KR12B and KR12C) inhibiting telomerase activity by stabilizing the telomeric G-quadruplex structures. An array of biophysical studies like fluorescence anisotropy, circular dichroism spectroscopy, circular dichroism melting, isothermal titration calorimetry, and high resolution nuclear magnetic resonance spectroscopy, in conjunction with molecular dynamics simulations, are employed to examine the interaction of peptides with the G-quadruplex structure. Furthermore, the peptide-quadruplex interaction is monitored in ex vivo systems, the telomerase over-expressed MCF7 breast adeno-carcinoma cell line. MTT assay and flow cytometry studies indicate selective antiproliferative activities of the peptides towards cancer cells over normal kidney epithelial cell line. Confocal microscopy evidenced nuclear transport and localisation of the peptides. A telomerase repeat amplification protocol assay further evidences telomere uncapping and abrogation of telomerase catalysing activity upon administration of peptides. Hence, arresting G-quadruplex structures using short peptides brings in a new mechanistic insight for the development of future peptide based therapeutics against cancer.

Graphical abstract: Restriction of telomerase capping by short non-toxic peptides via arresting telomeric G-quadruplex

Supplementary files

Article information

Article type
Paper
Submitted
13 Dec 2016
Accepted
23 Mar 2017
First published
12 Apr 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 20888-20899

Restriction of telomerase capping by short non-toxic peptides via arresting telomeric G-quadruplex

J. Jana, P. Sengupta, S. Mondal and S. Chatterjee, RSC Adv., 2017, 7, 20888 DOI: 10.1039/C6RA28149D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements