Efficient green electroluminescence based on an iridium(iii) complex with different device structures†
Abstract
A series of phosphorescent organic light-emitting diodes (OLEDs) with single or double light-emitting layer(s) were fabricated using a green iridium(III) complex Ir(BTBP)2POP containing 2′,6'-bis(trifluoromethyl)-2,4′-bipyridine (BTBP) cyclometalated ligand and 2-(5-phenyl-1,3,4-oxadiazol-2-yl)phenol (POP) ancillary ligand. The single light-emitting layer devices with the structure of ITO/MoO3 (5 nm)/TAPC (1,1-bis[4-(di-p-tolylamino)phenyl]cyclohexane, 30 nm)/mCP (N,N′-dicarbazolyl-3,5-benzene, 5 nm)/Ir(BTBP)2POP:PPO21 (3-(diphenylphosphoryl)-9-(4-(diphenylphosphoryl)phenyl)-9H-carbazole, 8 wt%, 10 nm)/TmPyPB (1,3,5-tri(m-pyrid-3-yl-phenyl)benzene, 40 nm)/LiF (1 nm)/Al (100 nm) achieved the highest luminance, current efficiency, power efficiency and external quantum efficiency (EQE) up to 47 599 cd m−2, 86.5 cd A−1, 52.2 lm W−1 and 31.0%, respectively. Furthermore, the double EML device with the structure of ITO/MoO3 (5 nm)/TAPC (30 nm)/mCP:Ir(BTBP)2POP (8 wt%, 10 nm)/PPO21:Ir(BTBP)2POP (8 wt%, 10 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (100 nm) obtained a higher maximum luminance of 49 139 cd m−2 and slightly lower maximum current efficiency, power efficiency and EQE of 75.8 cd A−1, 51.7 lm W−1 and 27.2%, respectively, with lower turn-on voltage. This research suggested that not only the doping concentration but also the thickness of the emissive and electron transport layers strongly affect the EL performances.

Please wait while we load your content...