Issue 4, 2017

Flexible full-solid-state supercapacitors based on self-assembly of mesoporous MoSe2 nanomaterials

Abstract

Nowadays, designing and fabricating efficient and cost-effective materials as electrodes for energy conversion and storage systems are highly desired. Various nanostructures with a high surface area and a large number of active sites are explored to enhance their electrochemical capacitance. Herein mesoporous molybdenum diselenide (MoSe2) nanomaterials are synthesized using a simple and cost-effective hydrothermal approach. High electrochemical activity and excellent stability of MoSe2 NFs//MoSe2 NRs in a symmetrical configuration suggest their great potential in energy storage applications. The device exhibits a capacity of 133 F g−1 at a current density of 2 A g−1, and maintains 92% of the primary capacitance after 2000 cycles. The maximum energy density of 36.2 Wh kg−1 at a power density of 1.4 kW kg−1 and a power density of 6.48 kW kg−1 at an energy density of 18 Wh kg−1 are achieved at an operating voltage of 1.4 V. And it also displays prominent electrochemical performance after mechanical bending, indicating its great potential for flexible supercapacitors.

Graphical abstract: Flexible full-solid-state supercapacitors based on self-assembly of mesoporous MoSe2 nanomaterials

Article information

Article type
Research Article
Submitted
09 Dec 2016
Accepted
10 Feb 2017
First published
13 Feb 2017

Inorg. Chem. Front., 2017,4, 675-682

Flexible full-solid-state supercapacitors based on self-assembly of mesoporous MoSe2 nanomaterials

Y. Qiu, X. Li, M. Bai, H. Wang, D. Xue, W. Wang and J. Cheng, Inorg. Chem. Front., 2017, 4, 675 DOI: 10.1039/C6QI00569A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements