Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings†
Abstract
Non-conventional fluorescent materials without aromatic structures have attracted much research attention in recent years. However, the working mechanism responsible for their fluorescence remains mysterious. Here we decipher the origin of fluorescence by studying the photophysical properties of a series of non-aromatic biogenic and synthetic peptides. An experimental study suggests that the turn-on fluorescence in the aggregation state/condensed phase is associated with the communication of amide groups, where hydrogen bonds are playing a critical role in bringing these functionalities into close proximity. This explanation is further justified by the study of the hierarchical influence on fluorescence and applied to biomimetic polymers in a more general content. This discovery provides a more comprehensive insight into the bioluminescence system. It may stimulate future development of new fluorescent materials, and inspire research on disease diagnostics, biomechanics measurements, etc. that are associated with protein morphology.