Jump to main content
Jump to site search

Issue 4, 2017
Previous Article Next Article

A facile synthetic strategy to polysiloxanes containing sulfonyl side groups with high dielectric permittivity

Author affiliations

Abstract

The chemical modification of polymers with lateral polar groups increases their dielectric permittivity above the glass transition temperature, making them attractive materials for dielectric elastomer actuators. Despite the large dipole moment of the sulfonyl moiety, its usefulness as a substituent in high permittivity polysiloxanes has not been explored so far. This work explores two post-polymerization synthetic strategies to reach such a goal, namely the oxidation of the thioether groups present in polysiloxanes which carry thioether side groups at every repeat unit and the modification of the vinyl groups of poly(methylvinylsiloxanes) with sulfonyl groups via thiol–ene chemistry. While both strategies in principle work, the oxidation of the thioether groups results in an undesired shortening of the polysiloxane chains. In contrast, the thiol–ene reactions give the target polymer in a clean and highly efficient process. For this reason the access to two sulfonyl containing thiols, to be employed in the thiol–ene reaction, was improved to the degree that they are now available on the 50 g scale as pure compounds. The sulfonyl content of the polysiloxanes was systematically varied by the use of two different thiols in the thiol–ene post-polymerization modification, one of which carried the sulfonyl group, the other a (dummy) butyl group instead. The prepared polymers were characterized by NMR, DSC, TGA, GPC, and impedance spectroscopy. All polymers show glass transition temperatures below room temperature. Dielectric permittivity measurements at room temperature show that the permittivity of the polymers at the frequency with minimal losses can be fine-tuned from about 5 up to 22.7. Because of their high dielectric permittivity, low glass transition temperatures, and easy and scalable synthesis from cheap materials, these novel polymers are attractive components for high permittivity elastomers to be employed in actuators, capacitors, and flexible electronics.

Graphical abstract: A facile synthetic strategy to polysiloxanes containing sulfonyl side groups with high dielectric permittivity

Back to tab navigation

Supplementary files

Publication details

The article was received on 01 Nov 2016, accepted on 02 Dec 2016 and first published on 09 Dec 2016


Article type: Paper
DOI: 10.1039/C6PY01917J
Citation: Polym. Chem., 2017,8, 715-724
  • Open access: Creative Commons BY license
  •   Request permissions

    A facile synthetic strategy to polysiloxanes containing sulfonyl side groups with high dielectric permittivity

    S. J. Dünki, E. Cuervo-Reyes and D. M. Opris, Polym. Chem., 2017, 8, 715
    DOI: 10.1039/C6PY01917J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements