Issue 45, 2017

A two-dimensional TiB4 monolayer exhibits planar octacoordinate Ti

Abstract

At present, the concept of planar hypercoordination in chemistry meets the fast development of two-dimensional (2D) nanomaterials, leading to considerable interest in searching for 2D materials with planar hypercoordinate atoms. In this work, by means of the swarm-intelligence structure search method and first-principles calculations, we predict a hitherto unknown 2D TiB4 monolayer with a planar octacoordinate Ti moiety, in which each Ti atom binds to eight B atoms with equal distances in a perfect plane, and has the highest coordination of Ti known for 2D materials thus far. Systematic ab initio calculations demonstrate the superior thermodynamic and dynamic stabilities of the predicted TiB4 monolayer, indicating the high feasibility for experimental synthesis. The stabilization of this perfect planar structure originates from the geometric fit between the atomic radius of Ti and the size of the 8-membered B ring, as well as the electron transfer from Ti to B atoms which compensates the electron deficiency of the full sp2 hybridized B network. Motivated by the unforeseen geometry of the TiB4 monolayer, a series of other 2D transition metal borides (TMB4, TM = V, Cr, Mo, W and Os) with quasi-planar octacoordinate TM atoms are further designed and discussed. The present work provides a useful roadmap for the discovery of 2D hypercoordinate materials.

Graphical abstract: A two-dimensional TiB4 monolayer exhibits planar octacoordinate Ti

Supplementary files

Article information

Article type
Paper
Submitted
02 Aug 2017
Accepted
25 Oct 2017
First published
25 Oct 2017

Nanoscale, 2017,9, 17983-17990

A two-dimensional TiB4 monolayer exhibits planar octacoordinate Ti

X. Qu, J. Yang, Y. Wang, J. Lv, Z. Chen and Y. Ma, Nanoscale, 2017, 9, 17983 DOI: 10.1039/C7NR05688E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements