Issue 31, 2017

Particle size affects the cytosolic delivery of membranotropic peptide-functionalized platinum nanozymes

Abstract

Delivery of therapeutic agents inside the cytosol, avoiding the confinement in endo–lysosomal compartments and their degradative environment, is one of the key targets of nanomedicine to gain the maximum remedial effects. Current approaches based on cell penetrating peptides (CPPs), despite improving the cellular uptake efficiency of nanocarriers, have shown controversial results in terms of intracellular localization. To elucidate the delivery potential of CPPs, in this work we analyzed the role of the particle size in influencing the ability of a membranotropic peptide, namely gH625, to escape the endo–lysosomal pathway and deliver the particles in the cytosol. To this aim, we carried out a systematic assessment of the cellular uptake and distribution of monodisperse platinum nanoparticles (PtNPs), having different diameters (2.5, 5 and 20 nm) and citrate capping or gH625 peptide functionalization. The presence of gH625 significantly increased the amount of internalized NPs in human cervix epithelioid carcinoma cells, as a function of particle size. However, scanning transmission electron microscopy (STEM) and electron tomography (ET) revealed a prevalent confinement of PtNPs within vesicular structures, regardless of the particle size and surface functionalization. Only in the case of the smallest 2.5 nm particles, the membranotropic peptide was able to partly maintain its functionality, enabling cytosolic delivery of a small fraction of internalized PtNPs, though particle agglomeration in culture medium limited single-particle transport across the cell membrane. Interestingly, membrane crossing by 2.5 nm functionalized-PtNPs seemed to occur by diffusion through the lipid bilayer, with no apparent membrane damage. For larger particle sizes (≥5 nm), their hindrance likely blocked the membranotropic mechanism. Combining the enhanced uptake and partial cytosolic delivery promoted by gH625, we were able to achieve a strong improvement of the antioxidant nanozyme function of 2.5 nm PtNPs, decreasing both the endogenous ROS level and its overproduction following an external oxidative insult.

Graphical abstract: Particle size affects the cytosolic delivery of membranotropic peptide-functionalized platinum nanozymes

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2017
Accepted
17 Jul 2017
First published
19 Jul 2017

Nanoscale, 2017,9, 11288-11296

Particle size affects the cytosolic delivery of membranotropic peptide-functionalized platinum nanozymes

D. Guarnieri, P. Melone, M. Moglianetti, R. Marotta, P. A. Netti and P. P. Pompa, Nanoscale, 2017, 9, 11288 DOI: 10.1039/C7NR02350B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements