Issue 20, 2017

High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection

Abstract

Hybrid MoO3/HAT-CN is employed as a hole injection layer (HIL) in green inverted colloidal quantum dot light-emitting devices (QLEDs). The hybrid HILs can be easily prepared and have been found to effectively improve the electroluminescent properties. The best performance device had an HIL of 1.5 nm-thick MoO3/2.5 nm-thick HAT-CN and showed a turn-on voltage of 1.9 V, a maximum current efficiency (CEmax) of 41.3 cd A−1, and maximum external quantum efficiency of 9.72%. Compared to the corresponding devices with the single MoO3 or HAT-CN interlayer, the CEmax of the hole-only devices was improved by 1.6 or 1.5 times, respectively. The measured electrical performance shows that hole-only devices with hybrid HILs have a smaller leakage current density at low driving voltage and much enhanced hole injection current than the devices with single interlayers. It indicates that much improved electroluminescent efficiency in green inverted QLEDs with hybrid MoO3/HAT-CN orginates from the significant enhancement of hole injection efficiency and suppression of space charge accumulation in the quantum dot-emitting region due to the improved balance of the charge carriers. The hybrid HILs can be extended to other color inverted QLEDs, which are favorable to achieve bright, highly efficient, and color saturation devices for display applications.

Graphical abstract: High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection

Supplementary files

Article information

Article type
Paper
Submitted
26 Feb 2017
Accepted
18 Apr 2017
First published
20 Apr 2017

Nanoscale, 2017,9, 6748-6754

High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection

L. Wang, Y. Lv, J. Lin, Y. Fan, J. Zhao, Y. Wang and X. Liu, Nanoscale, 2017, 9, 6748 DOI: 10.1039/C7NR01414G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements