Issue 9, 2017

Solvothermal-assisted synthesis of self-assembling TiO2 nanorods on large graphitic carbon nitride sheets with their anti-recombination in the photocatalytic removal of Cr(vi) and rhodamine B under visible light irradiation

Abstract

TiO2-based nanorods (TNRs) were self-assembled on large graphitic carbon nitride (g-C3N4) sheets via the solvothermal-assisted route. The results demonstrated that the effective anchoring of TNRs (a side length of ca. 200–300 nm) was highly dispersed on the surface of whole g-C3N4 sheets. The shift in the Ti 2p XPS core level spectrum indicated an increase in the net positive charge of the Ti ions, ensuring the formation of an interface between TNRs and g-C3N4. The charge transferred from g-C3N4 sheets to TNRs effectively prevented the recombination of excited charges, which is consistent with the significant quenching of PL. The extent of visible-light-sensitive photocatalytic (PC) activity was evaluated by the removal of potassium dichromate (Cr(VI)) or the degradation of rhodamine B (RhB). The photocatalytic removal of Cr(VI) using RhB was effectively improved. The synergistic effect between the removal of Cr(VI) and degradation of RhB was revealed by multiple utilization of TNRs/g-C3N4 for PC activity. The effective suppression of the recombination of photo-induced charges and the absorption of RhB was responsible for the enhancement in the PC activity. An alternate mechanism for enhanced visible-light photocatalytic activity was also considered.

Graphical abstract: Solvothermal-assisted synthesis of self-assembling TiO2 nanorods on large graphitic carbon nitride sheets with their anti-recombination in the photocatalytic removal of Cr(vi) and rhodamine B under visible light irradiation

Supplementary files

Article information

Article type
Paper
Submitted
24 Nov 2016
Accepted
02 Jan 2017
First published
04 Jan 2017

Nanoscale, 2017,9, 3231-3245

Solvothermal-assisted synthesis of self-assembling TiO2 nanorods on large graphitic carbon nitride sheets with their anti-recombination in the photocatalytic removal of Cr(VI) and rhodamine B under visible light irradiation

D. Lu, P. Fang, W. Wu, J. Ding, L. Jiang, X. Zhao, C. Li, M. Yang, Y. Li and D. Wang, Nanoscale, 2017, 9, 3231 DOI: 10.1039/C6NR09137G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements