Issue 16, 2017

Gold nanotriangles: scale up and X-ray radiosensitization effects in mice

Abstract

Abstract In the past decade, there has been considerable interest in radiosensitization using gold nanoparticles that accumulate specifically in cancerous tissue while sparing normal tissues. Despite this interest, it remains unclear which nanoparticle morphologies, cellular uptake, or cytoplasmic distribution elicit optimal radiosensitization. We introduce gold nanotriangles (AuNTs) as a possible X-ray radiotherapy sensitizer. In this study, we first explored a large-scale synthetic method for the production of high quality monodisperse AuNTs. Second, we conducted in vitro and in vivo experiments to evaluate the effect of PEGylated AuNTs (pAuNTs) on cellular uptake, cytotoxicity, bio-distribution, and radiosensitization on radiation-resistant human Glioblastoma Multiforme (GBM) cells. Our results suggest that the new scale up synthesis methodology consistently produced high quality AuNTs and pAuNTs which had nonspecific cellular uptake without any obvious cytotoxicity and exhibited excellent radiosensitization.

Graphical abstract: Gold nanotriangles: scale up and X-ray radiosensitization effects in mice

Supplementary files

Article information

Article type
Paper
Submitted
18 Oct 2016
Accepted
19 Jan 2017
First published
23 Jan 2017

Nanoscale, 2017,9, 5085-5093

Gold nanotriangles: scale up and X-ray radiosensitization effects in mice

S. R. Bhattarai, P. J. Derry, K. Aziz, P. K. Singh, A. M. Khoo, A. S. Chadha, A. Liopo, E. R. Zubarev and S. Krishnan, Nanoscale, 2017, 9, 5085 DOI: 10.1039/C6NR08172J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements