Issue 20, 2017

Role of MoS2 and WS2 monolayers on photocatalytic hydrogen production and the pollutant degradation of monoclinic BiVO4: a first-principles study

Abstract

The global dependence on exhaustible fossil fuel resources has made the search for an alternative renewable and sustainable fuel more urgent. Photocatalysis has gained increasing consideration as a promising technology to solve problems associated with solar energy conversion. Fabricated m-BiVO4-based heterostructures have shown improved photocatalytic activity for hydrogen evolution and pollutant degradation; however, a deeper understanding of the photocatalytic mechanism and the role of the monolayers is still lacking. Moreover, no theoretical studies have been carried out on MS2/m-BiVO4(010) heterostructures. In the present study, the roles of MoS2 and WS2 monolayers loaded onto a m-BiVO4 surface for active photocatalytic hydrogen production and pollutant degradation are explored using first-principle studies. Herein, hybrid density functional calculations and a long-range dispersion correction method were used to investigate the charge transfer, electronic properties, photocatalytic activity and mechanism of the MS2/m-BiVO4(010) heterostructures. The results showed a narrow band gap, built-in potential and a type-II band alignment for the MS2/m-BiVO4(010) heterostructures compared to pure m-BiVO4, which favour the separation and transfer of charge carriers and visible-light-driven activity. The MoS2/m-BiVO4 heterostructure showed a suitable band edge for hydrogen production and pollutant degradation compared to the WS2/m-BiVO4 heterostructure. This improvement was attributed to the role of the MoS2 monolayer as an electron donor, the many reactive sites on the MoS2 surface and the enhanced electron/hole pair separation of charge carriers at the MoS2/m-BiVO4(010) interface. Considering that the MS2 monolayer coupled with m-BiVO4 can restrain the electron–hole recombination rate without lattice distortion indicates that the heterostructure approach is better than the doping approach. Based on the analysis of the electronic properties, the MS2/m-BiVO4(010) heterostructures were shown to fit within the acceptable band gap and built-in potential range. The proposed theoretical design paves a way for the effective and large-scale fabrication of m-BiVO4-based photocatalyst for solar energy conversion and environmental remediation applications.

Graphical abstract: Role of MoS2 and WS2 monolayers on photocatalytic hydrogen production and the pollutant degradation of monoclinic BiVO4: a first-principles study

Supplementary files

Article information

Article type
Paper
Submitted
30 Jun 2017
Accepted
01 Sep 2017
First published
01 Sep 2017

New J. Chem., 2017,41, 11701-11713

Role of MoS2 and WS2 monolayers on photocatalytic hydrogen production and the pollutant degradation of monoclinic BiVO4: a first-principles study

F. Opoku, K. K. Govender, C. G. C. E. van Sittert and P. P. Govender, New J. Chem., 2017, 41, 11701 DOI: 10.1039/C7NJ02340E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements