Issue 4, 2017

Application of graphene quantum dots functionalized with thymine and thymine-appended zinc phthalocyanine as novel photoluminescent nanoprobes

Abstract

Graphene quantum dots (GQDs) and zinc phthalocyanine (ZnPc) were separately modified with thymine to obtain thymine-functionalized GQDs (T-GQDs) and ZnPc (T-ZnPc). T-GQDs and nanoconjugates of T-ZnPc with pristine GQDs (represented as pristine GQDs–T-ZnPc) or T-GQDs (represented as T-GQDs–T-ZnPc) were employed as fluorescent probes for the detection of mercury(II) ions (Hg2+). The as-synthesized T-GQDs alone demonstrated a highly sensitive and selective fluorescence “turn-OFF” process for Hg2+ detection due to the specific interaction between the thymine functionality on the T-GQDs with Hg2+. On the other hand, the fluorescence of pristine GQDs and T-GQDs was quenched (“turn-OFF”) upon coordination with T-ZnPc. However, the fluorescence emission was selectively restored (“turn-ON” process) in the presence of Hg2+ resulting in the sensitive detection of Hg2+ in the nanomolar concentration range (limit of detection = 0.05 nM, for the pristine GQDs–T-ZnPc probe). The probe containing pristine GQDs and the T-ZnPc complex demonstrated a higher specific and sensitive recognition of Hg2+ as compared to the T-GQDs alone or T-GQDs–T-ZnPc probes which are ascribed to the fluorescence “turn-ON” process of the former. Screening of different metal ions and counter ions proved that the probes are specifically suited for Hg2+ detection.

Graphical abstract: Application of graphene quantum dots functionalized with thymine and thymine-appended zinc phthalocyanine as novel photoluminescent nanoprobes

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2016
Accepted
21 Dec 2016
First published
21 Dec 2016

New J. Chem., 2017,41, 1447-1458

Application of graphene quantum dots functionalized with thymine and thymine-appended zinc phthalocyanine as novel photoluminescent nanoprobes

O. J. Achadu and T. Nyokong, New J. Chem., 2017, 41, 1447 DOI: 10.1039/C6NJ03285K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements