Issue 4, 2017

Quantitative multiphase model for hydrothermal liquefaction of algal biomass

Abstract

Optimized incorporation of hydrothermal liquefaction (HTL, reaction in water at elevated temperature and pressure) within an integrated biorefinery requires accurate models to predict the quantity and quality of all HTL products. Existing models primarily focus on biocrude product yields with limited consideration for biocrude quality and aqueous, gas, and biochar co-products, and have not been validated with an extensive collection of feedstocks. In this study, HTL experiments (300 °C, 30 min) were conducted using 24 different batches of microalgae feedstocks with distinctive feedstock properties, which resulted in a wide range of biocrude (21.3–54.3 dry weight basis, dw%), aqueous (4.6–31.2 dw%), gas (7.1–35.6 dw%), and biochar (1.3–35.0 dw%) yields. Based on these results, a multiphase component additivity (MCA) model was introduced to predict yields and characteristics of the HTL biocrude product and aqueous, gas, and biochar co-products, with only feedstock biochemical (lipid, protein, carbohydrate, and ash) and elemental (C/H/N) composition as model inputs. Biochemical components were determined to distribute across biocrude product/HTL co-products as follows: lipids to biocrude; proteins to biocrude > aqueous > gas; carbohydrates to gas ≈ biochar > biocrude; and ash to aqueous > biochar. Modeled quality indicators included biocrude C/H/N contents, higher heating value (HHV), and energy recovery (ER); aqueous total organic carbon (TOC) and total nitrogen (TN) contents; and biochar carbon content. The model was validated with HTL data from the literature, the potential to expand the application of this modeling framework to include waste biosolids (e.g., wastewater sludge, manure) was explored, and future research needs for industrial application were identified. Ultimately, the MCA model represents a critical step towards the integration of cultivation models with downstream HTL and biorefinery operations to enable system-level optimization, valorization of co-product streams (e.g., through catalytic hydrothermal gasification and nutrient recovery), and the navigation of tradeoffs across the value chain.

Graphical abstract: Quantitative multiphase model for hydrothermal liquefaction of algal biomass

Supplementary files

Article information

Article type
Paper
Submitted
29 Nov 2016
Accepted
17 Jan 2017
First published
17 Jan 2017

Green Chem., 2017,19, 1163-1174

Quantitative multiphase model for hydrothermal liquefaction of algal biomass

Y. Li, S. Leow, A. C. Fedders, B. K. Sharma, J. S. Guest and T. J. Strathmann, Green Chem., 2017, 19, 1163 DOI: 10.1039/C6GC03294J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements