Issue 2, 2017

Lychee pulp phenolics ameliorate hepatic lipid accumulation by reducing miR-33 and miR-122 expression in mice fed a high-fat diet

Abstract

Dietary phenolics exhibit hypolipidemic activity by changing lipid metabolism-related microRNA (miRNA) expression. Quercetin 3-O-rutinoside-7-O-α-L-rhamnosidase (quercetin 3-rut-7-rha), rutin and (−)-epicatechin are the main phenolics in lychee (Litchi chinensis Sonn.) pulp. A previous study reported that quercetin 3-rut-7-rha and rutin had hypolipidemic effects. To elucidate these effects and the underlying molecular mechanisms of lychee pulp phenolics (LPPs), the hepatic mRNA and protein expression of lipid metabolism-related genes and their associated miRNAs were measured after ten weeks of treatment with a high-fat diet (HFD) alone or in combination with LPPs. The administration of LPPs significantly reduced the HFD-induced increase in serum total cholesterol and triglyceride levels but increased the HDL-c content. The mRNA and protein expression levels of hepatic adenosine triphosphate-binding cassette transporter A1 (ABCA1) and carnitine palmitoyltransferase 1a (CPT1a) were upregulated, while fatty acid synthase (FAS) mRNA and the corresponding protein expression levels were downregulated by LPPs. Furthermore, the expression levels of miR-33, which directly modulates ABCA1 and CPT1a, and miR-122, which indirectly regulates FAS, were downregulated in mouse hepatocytes. The repression of miR-33 and miR-122 is a possible molecular mechanism of the hypolipidemic effects of LPPs in the liver. Our results suggest a novel hypolipidemic mechanism of LPPs.

Graphical abstract: Lychee pulp phenolics ameliorate hepatic lipid accumulation by reducing miR-33 and miR-122 expression in mice fed a high-fat diet

Supplementary files

Article information

Article type
Paper
Submitted
14 Oct 2016
Accepted
29 Dec 2016
First published
03 Jan 2017

Food Funct., 2017,8, 808-815

Lychee pulp phenolics ameliorate hepatic lipid accumulation by reducing miR-33 and miR-122 expression in mice fed a high-fat diet

D. Su, R. Zhang, F. Hou, J. Chi, F. Huang, S. Yan, L. Liu, Y. Deng, Z. Wei and M. Zhang, Food Funct., 2017, 8, 808 DOI: 10.1039/C6FO01507G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements