Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 4, 2017
Previous Article Next Article

A low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM2.5 capture

Author affiliations

Abstract

Ambient particulate matter (PM) pollution jeopardizes both the global climate and public health. Therefore, there is a need for a cost-effective and energy-efficient air filter. Herein, a low filtration resistance polyacrylonitrile (PAN) three-dimensional composite membrane with high porosity was controllably fabricated via multi-jet free surface electrospinning. The composite nanofibrous membrane, composed of ternary structures including scaffold nanofibers, microspheres and thin nanofibers, was demonstrated as an air filter for the first time. The scaffold nanofibers constituted a stable skeletal framework in which the microspheres were embedded; the microspheres enlarged the inter-fiber voids thus greatly reducing the pressure drop, while thin nanofibers with diameters of 84 nm interwoven with the scaffold nanofibers improved the collision probability of the airborne particles and guaranteed a robust filtration performance without sacrificing filtration efficiency. Additionally, the embedded microspheres also significantly improved the mechanical properties of the membrane. The fabricated high porosity three-dimensional composite membrane exhibited high filtration efficiency (99.99%) and low pressure drop (126.7 Pa) to sodium chloride (NaCl) aerosol particles under an airflow velocity of 5.3 cm sāˆ’1. Furthermore, the as-prepared membrane demonstrated high PM2.5 filtration efficiency (99.24%) in a dynamic PM2.5 filtration system simulating the typical operation environment of an air filter. The low resistance three-dimensional composite membrane fabricated via free surface electrospinning is not only efficient for laboratory research but can also be applied to industrial production and in commercial applications.

Graphical abstract: A low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM2.5 capture

Back to tab navigation

Supplementary files

Article information


Submitted
27 Dec 2016
Accepted
04 Feb 2017
First published
06 Feb 2017

Environ. Sci.: Nano, 2017,4, 864-875
Article type
Paper

A low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM2.5 capture

H. Gao, Y. Yang, O. Akampumuza, J. Hou, H. Zhang and X. Qin, Environ. Sci.: Nano, 2017, 4, 864
DOI: 10.1039/C6EN00696E

Social activity

Search articles by author

Spotlight

Advertisements