Issue 4, 2017

Increasing evidence indicates low bioaccumulation of carbon nanotubes

Abstract

As the production of carbon nanotubes (CNTs) expands, so might the potential for release into the environment. The possibility of bioaccumulation and toxicological effects has prompted research on their fate and potential ecological effects. For many organic chemicals, bioaccumulation properties are associated with lipid–water partitioning properties. However, predictions based on phase partitioning provide a poor fit for nanomaterials. In the absence of data on the bioaccumulation and other properties of CNTs, the Office of Pollution Prevention and Toxics (OPPT) within the US Environmental Protection Agency (EPA) subjects new pre-manufacture submissions for all nanomaterials to a higher-level review. We review the literature on CNT bioaccumulation by plants, invertebrates and non-mammalian vertebrates, summarizing 42 studies to improve the assessment of the potential for bioaccumulation. Because the properties and environmental fate of CNTs may be affected by type (single versus multiwall), functionalization, and dosing technique, the bioaccumulation studies were reviewed with respect to these factors. Absorption into tissues and elimination behaviors across species were also investigated. All of the invertebrate and non-mammalian vertebrate studies showed little to no absorption of the material from the gut tract to other tissues. These findings combined with the lack of biomagnification in the CNT trophic transfer studies conducted to date suggest that the overall risk of trophic transfer is low. Based on the available data, in particular the low levels of absorption of CNTs across epithelial surfaces, CNTs generally appear to form a class that should be designated as a low concern for bioaccumulation.

Graphical abstract: Increasing evidence indicates low bioaccumulation of carbon nanotubes

Article information

Article type
Perspective
Submitted
08 Sep 2016
Accepted
27 Jan 2017
First published
21 Feb 2017

Environ. Sci.: Nano, 2017,4, 747-766

Increasing evidence indicates low bioaccumulation of carbon nanotubes

R. Bjorkland, D. A. Tobias and E. J. Petersen, Environ. Sci.: Nano, 2017, 4, 747 DOI: 10.1039/C6EN00389C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements