Issue 11, 2017

Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency

Abstract

Crystalline silicon (c-Si) solar cells featuring a high-temperature processed homojunction have dominated the photovoltaic industry for decades, with a global market share of around 93%. Integrating commercially available crystalline silicon solar cells with high-efficiency perovskite solar cells is a viable pathway to increase the power conversion efficiency, and hence achieve low levelized electricity costs for the photovoltaic systems. However, the fabrication process for this type of cell is challenging due to the many, and often conflicting, material processing requirements and limitations. Here, we present an innovative design for a monolithic perovskite/silicon tandem solar cell, featuring a mesoscopic perovskite top subcell and a high-temperature tolerant homojunction c-Si bottom subcell. The improved temperature tolerance of the c-Si bottom cell permits significantly increased flexibility in the design and fabrication of the perovskite cell. We demonstrate an efficiency of 22.5% (steady-state) and a Voc of 1.75 V on a 1 cm2 cell. The method developed in this work opens up new possibilities in designing, fabricating and commercialising low-cost high-efficiency perovskite/c-Si tandem solar cells.

Graphical abstract: Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency

Supplementary files

Article information

Article type
Paper
Submitted
11 Aug 2017
Accepted
13 Oct 2017
First published
13 Oct 2017

Energy Environ. Sci., 2017,10, 2472-2479

Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency

Y. Wu, D. Yan, J. Peng, T. Duong, Y. Wan, S. P. Phang, H. Shen, N. Wu, C. Barugkin, X. Fu, S. Surve, D. Grant, D. Walter, T. P. White, K. R. Catchpole and K. J. Weber, Energy Environ. Sci., 2017, 10, 2472 DOI: 10.1039/C7EE02288C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements