Issue 38, 2017

Axial substitution of a precursor resulted in two high-energy copper(ii) complexes with superior detonation performances

Abstract

The design and synthesis of explosives with high performance, good thermal stability, and low sensitivity is an important subject for the development of energetic materials. Energetic complexes have recently emerged as a promising energetic material form. As one of the representatives, [Cu(Htztr)2(H2O)2]n (H2tztr = 3-(1H-tetrazol-5-yl)-1H-triazole) was previously reported with good energetic performance, outstanding thermostability (Tdec = 345 °C) and low sensitivity to impact and friction stimuli. However, due to the existence of water molecules, its effective energy density is remarkably decreased, resulting in a diminished detonation performance. In order to further improve the detonation performance, using [Cu(Htztr)2(H2O)2]n as a precursor, {[Cu(Htztr)(H2O)]NO3}n (1) and [Cu(H2tztr)2(HCOO)2]n (2) were synthesized by the axial substitution reaction with NO3 and HCOO. The structures of 1 and 2 were characterized by single crystal X-ray diffraction. Both of them exhibit high thermal stabilities and insensitivities to impact and friction. Moreover, the same DFT calculation methodology shows that the heat of detonation of 2 (3.5663 kcal g−1) is significantly higher than that of the precursor [Cu(Htztr)2(H2O)2]n (2.1281 kcal g−1). Meanwhile, the empirical Kamlet–Jacobs equations were used to theoretically predict the detonation properties of the title complexes, and the results show that 1 and 2 have excellent detonation velocity (D) and detonation pressure (P).

Graphical abstract: Axial substitution of a precursor resulted in two high-energy copper(ii) complexes with superior detonation performances

Supplementary files

Article information

Article type
Paper
Submitted
15 Jun 2017
Accepted
04 Sep 2017
First published
04 Sep 2017

Dalton Trans., 2017,46, 12893-12900

Axial substitution of a precursor resulted in two high-energy copper(II) complexes with superior detonation performances

X. Li, Q. Yang, Q. Wei, G. Xie, S. Chen and S. Gao, Dalton Trans., 2017, 46, 12893 DOI: 10.1039/C7DT02179H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements