Issue 33, 2017

A novel highly selective ligand for separation of actinides and lanthanides in the nuclear fuel cycle. Experimental verification of the theoretical prediction

Abstract

We have predicted earlier by DFT simulation that tridentate O,N,O-donor cyclic dilactams (B) belonging to the family of pyridine-2,6-dicarboxamides are much more selective and efficient extractants for the separation of lanthanides and actinides than open-structure pyridine-2,6-dicarboxamides due to the higher degree of “ligand preorganization”. In the present work, three new ligands of type (B) were synthesized. Extraction experiments showed that, in line with the data from DFT simulation, these ligands have 5–6-fold higher selectivity for the separation of an Am3+/Eu3+ pair and provide distribution coefficients D which are by three orders of magnitude higher than those for the related parent ligands with an open structure. Determination of the solvate numbers (SNs) for Eu3+ and Am3+ cations by slope analysis has shown that the stoichiometry of complexes, in the form of which these ions pass from the aqueous into the organic phase, depends to a considerable extent on the polarity of the organic solvent. Strongly polar solvents (ε > 20) extract these cations mainly in the form of 1 : 1 complexes LM(NO3)3 having according to the DFT simulation the largest dipole moments (μ = 18.6–19.7 D). The solvents of low polarity (ε ≤ 10) extract these cations mainly in the form of less polar 2 : 1 complexes L2M(NO3)3 (μ ≈ 1.6 D). For solvents of intermediate polarity fractional values of solvate numbers were obtained which indicates the coexistence of complexes LM(NO3)3 and L2M(NO3)3 in the organic phase.

Graphical abstract: A novel highly selective ligand for separation of actinides and lanthanides in the nuclear fuel cycle. Experimental verification of the theoretical prediction

Supplementary files

Article information

Article type
Paper
Submitted
21 Mar 2017
Accepted
01 Jul 2017
First published
03 Jul 2017

Dalton Trans., 2017,46, 10926-10934

A novel highly selective ligand for separation of actinides and lanthanides in the nuclear fuel cycle. Experimental verification of the theoretical prediction

H. V. Lavrov, N. A. Ustynyuk, P. I. Matveev, I. P. Gloriozov, S. S. Zhokhov, M. Yu. Alyapyshev, L. I. Tkachenko, I. G. Voronaev, V. A. Babain, S. N. Kalmykov and Yu. A. Ustynyuk, Dalton Trans., 2017, 46, 10926 DOI: 10.1039/C7DT01009E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements