Issue 10, 2017

Facile synthesis of 3D porous Co3V2O8 nanoroses and 2D NiCo2V2O8 nanoplates for high performance supercapacitors and their electrocatalytic oxygen evolution reaction properties

Abstract

Binary metal oxides have recently attracted extensive attention from researchers in the energy storage and conversion field due to their high energy densities and multiple oxidation states. Novel 3D Co3V2O8 porous rose-like structures and 2D NiCo2V2O8 nanoplates were facilely synthesized via a solvothermal method, and the morphologies, Ni/Co ratios, and surface area of these samples can be easily tuned in the same procedure. The as-prepared Co3V2O8 porous rose-like structure exhibited good electrocatalytic oxygen evolution performance with excellent activity and stability. In addition, 2D NiCo2V2O8 nanoplates delivered a high specific capacitance of 1098.9 F g−1 at 4 A g−1 and good cycling stability (remaining 68% after 7000 cycles) in aqueous KOH electrolyte. The NiCo2V2O8 nanoplates inherit the pseudocapacitive benefits of both Ni3V2O8 and Co3V2O8, showing a higher specific capacitance than pure Co3V2O8 porous rose-like structures.

Graphical abstract: Facile synthesis of 3D porous Co3V2O8 nanoroses and 2D NiCo2V2O8 nanoplates for high performance supercapacitors and their electrocatalytic oxygen evolution reaction properties

Supplementary files

Article information

Article type
Paper
Submitted
04 Feb 2017
Accepted
08 Feb 2017
First published
09 Feb 2017

Dalton Trans., 2017,46, 3295-3302

Facile synthesis of 3D porous Co3V2O8 nanoroses and 2D NiCo2V2O8 nanoplates for high performance supercapacitors and their electrocatalytic oxygen evolution reaction properties

J. Zhang, B. Yuan, S. Cui, N. Zhang, J. Wei, X. Wang, D. Zhang, R. Zhang and Q. Huo, Dalton Trans., 2017, 46, 3295 DOI: 10.1039/C7DT00435D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements