Jump to main content
Jump to site search

Issue 9, 2017
Previous Article Next Article

Keratin: dissolution, extraction and biomedical application

Author affiliations


Keratinous materials such as wool, feathers and hooves are tough unique biological co-products that usually have high sulfur and protein contents. A high cystine content (7–13%) differentiates keratins from other structural proteins, such as collagen and elastin. Dissolution and extraction of keratin is a difficult process compared to other natural polymers, such as chitosan, starch, collagen, and a large-scale use of keratin depends on employing a relatively fast, cost-effective and time efficient extraction method. Keratin has some inherent ability to facilitate cell adhesion, proliferation, and regeneration of the tissue, therefore keratin biomaterials can provide a biocompatible matrix for regrowth and regeneration of the defective tissue. Additionally, due to its amino acid constituents, keratin can be tailored and finely tuned to meet the exact requirement of degradation, drug release or incorporation of different hydrophobic or hydrophilic tails. This review discusses the various methods available for the dissolution and extraction of keratin with emphasis on their advantages and limitations. The impacts of various methods and chemicals used on the structure and the properties of keratin are discussed with the aim of highlighting options available toward commercial keratin production. This review also reports the properties of various keratin-based biomaterials and critically examines how these materials are influenced by the keratin extraction procedure, discussing the features that make them effective as biomedical applications, as well as some of the mechanisms of action and physiological roles of keratin. Particular attention is given to the practical application of keratin biomaterials, namely addressing the advantages and limitations on the use of keratin films, 3D composite scaffolds and keratin hydrogels for tissue engineering, wound healing, hemostatic and controlled drug release.

Graphical abstract: Keratin: dissolution, extraction and biomedical application

Back to tab navigation

Publication details

The article was received on 04 May 2017, accepted on 30 May 2017 and first published on 31 May 2017

Article type: Review Article
DOI: 10.1039/C7BM00411G
Citation: Biomater. Sci., 2017,5, 1699-1735
  •   Request permissions

    Keratin: dissolution, extraction and biomedical application

    A. Shavandi, T. H. Silva, A. A. Bekhit and A. E. A. Bekhit, Biomater. Sci., 2017, 5, 1699
    DOI: 10.1039/C7BM00411G

Search articles by author