Issue 48, 2016

Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors

Abstract

Metal–organic frameworks have received increasing attention as promising electrode materials in supercapacitors. In this study, we have successfully synthesized a novel accordion-like Ni-MOF superstructure ([Ni3(OH)2(C8H4O4)2(H2O)4]·2H2O), for the first time, and used it as an electrode material for supercapacitors. The supercapacitors with the novel electrode exhibited excellent electrochemical performance. For example, the accordion-like Ni-MOF electrode showed specific capacitances of 988 and 823 F g−1 at current densities of 1.4 and 7.0 A g−1, respectively, while maintaining outstanding cycling stability (capacitance retention of 96.5% after 5000 cycles at a current density of 1.4 A g−1). More importantly, the accordion-like Ni-MOF and activated carbons were assembled into a high-performance flexible solid-state asymmetric supercapacitor with a specific capacitance of 230 mF cm−2 at a current density of 1.0 mA cm−2. The cycle test showed that the device can offer 92.8% capacity of the initial capacitance at 5.0 mA cm−2 after 5000 cycles with little decay. The maximum energy density of the device can achieve 4.18 mW h cm−3 and the maximum power density can also achieve 231.2 mW cm−3.

Graphical abstract: Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2016
Accepted
16 Nov 2016
First published
16 Nov 2016

J. Mater. Chem. A, 2016,4, 19078-19085

Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors

Y. Yan, P. Gu, S. Zheng, M. Zheng, H. Pang and H. Xue, J. Mater. Chem. A, 2016, 4, 19078 DOI: 10.1039/C6TA08331E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements