Issue 46, 2016

Significantly enhanced energy storage density of sandwich-structured (Na0.5Bi0.5)0.93Ba0.07TiO3/P(VDF–HFP) composites induced by PVP-modified two-dimensional platelets

Abstract

Two-dimensional (Na0.5Bi0.5)0.93Ba0.07TiO3 (NBBT) platelets with a size of up to ca. 5 μm and thickness of 0.2–0.5 μm were introduced as fillers into a polymer matrix to prepare energy storage composites for the first time. The NBBT platelets were treated with an aqueous solution of H2O2 and coated with polyvinylpyrrolidone (PVP) before mixing with poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF–HFP)). The final composite was denoted as NBBT@PVP/P(VDF–HFP). Composites were prepared with NBBT@PVP loadings from 1 to 30 vol%. The relative permittivity of the composites increased significantly with increasing NBBT@PVP loading, while the breakdown strength decreased. To improve the breakdown strength of the composites, a sandwich-structure of multilayer films was developed, which used NBBT@PVP/P(VDF–HFP) composites with 1 vol% NBBT loadings as central hard layers and the composites with 30 vol% NBBT loadings as neighboring soft layers. The five-layered film, which contained three central hard layers and neighboring soft layers, showed excellent energy storage properties. The breakdown strength and the maximum energy storage density of the film reached 258 kV mm−1 and 14.95 J cm−3, respectively. The energy efficiency remained 0.9 at an electric field of 200 kV mm−1. The findings provide a new approach to produce energy storage materials with high performance.

Graphical abstract: Significantly enhanced energy storage density of sandwich-structured (Na0.5Bi0.5)0.93Ba0.07TiO3/P(VDF–HFP) composites induced by PVP-modified two-dimensional platelets

Article information

Article type
Paper
Submitted
04 Aug 2016
Accepted
30 Oct 2016
First published
31 Oct 2016

J. Mater. Chem. A, 2016,4, 18050-18059

Significantly enhanced energy storage density of sandwich-structured (Na0.5Bi0.5)0.93Ba0.07TiO3/P(VDF–HFP) composites induced by PVP-modified two-dimensional platelets

C. Jiang, D. Zhang, K. Zhou, X. Zhou, H. Luo and I. Abrahams, J. Mater. Chem. A, 2016, 4, 18050 DOI: 10.1039/C6TA06682H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements