Issue 44, 2016

Multifunctional high-activity and robust electrocatalyst derived from metal–organic frameworks

Abstract

High-activity electrocatalysts with robust structure are critical for development of renewable-energy technologies. Herein, a hybrid of cobalt nanoparticles embedded in N-doped carbon nanotubes (Co@NCNT) was fabricated via economically scalable pyrolysis of a mixture of a Co-based metal–organic framework (ZIF-67) and dicyandiamide. The as-synthesized Co@NCNT hybrid was characterized by techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photon spectroscopy (XPS) etc., confirming that it possessed desirable properties of high surface area, robust structure, and good conductivity. A series of electrochemical measurements demonstrated that the Co@NCNT exhibits high activity and excellent durability toward several important electrochemical reactions, including hydrogen evolution reaction (HER) in pH-universal electrolyte, oxygen reduction reaction (ORR) in both acidic and alkaline media, glucose oxidation reaction (GOR), and oxygen evolution reaction (OER) in alkaline medium, mainly as a result of the synergistic effects of unique structure and high surface area of the Co nanoparticles and nitrogen dopant in the nanocomposite. A zinc–air battery with outstanding performance was set up using the Co@NCNT as cathode material, demonstrating its potential applications in energy storage and as a conversion system device.

Graphical abstract: Multifunctional high-activity and robust electrocatalyst derived from metal–organic frameworks

Supplementary files

Article information

Article type
Paper
Submitted
21 Jul 2016
Accepted
30 Aug 2016
First published
31 Aug 2016

J. Mater. Chem. A, 2016,4, 17288-17298

Multifunctional high-activity and robust electrocatalyst derived from metal–organic frameworks

E. Zhang, Y. Xie, S. Ci, J. Jia, P. Cai, L. Yi and Z. Wen, J. Mater. Chem. A, 2016, 4, 17288 DOI: 10.1039/C6TA06185K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements