Issue 38, 2016

Solution-processed small molecules with ethynylene bridges for highly efficient organic solar cells

Abstract

Two acceptor–donor–acceptor (A–D–A) conjugated molecules DPP-E-BDT and DPP-E-BDT-T, using diketopyrrolopyrrole (DPP) as the A-unit, ethynylene bridge flanked benzo-[1,2-b:4,5-b′]dithiophene (E-BDT) as the central D-unit, and different 4,8-substitutions on the BDT were synthesized by Sonogashira coupling reactions for solution-processed organic solar cells (OSCs). The insertion of electron-withdrawing ethynylene bridges (sp hybridization) in the DPP-E-BDT and DPP-E-BDT-T molecules leads to planar and enlarged aromatic skeletons, larger band gaps, and deeper HOMO levels. 4,8-Dithienyl substitution on BDT in DPP-E-BDT-T results in additional conjugation extension to give a slightly smaller band gap compared to the 4,8-dialkoxy substitution in target molecules. Bulk heterojunction solar cells using DPP-E-BDT and DPP-E-BDT-T as the donor materials and fullerene acceptor showed a high open-circuit voltage of 0.89 V and moderate current densities of 10.9 mA cm−2. Besides, quite high fill factors (73.6%) could be obtained. Power conversion efficiencies (PCE) of 7.12% were obtained for DPP-E-BDT-T blends, which is the highest efficiency among small molecules based on DPP and BDT units. In active layer fabrication, 1,8-diiodooctane (DIO) was used as a solvent additive and subsequent thermal annealing treatment was also employed. We saw that these combined treatments led to balanced hole and electron transports, with values around 1.2 × 10−4 cm2 V−1 s−1 for the active layers. These results demonstrated that ethynylene bridges in small molecule donors are quite useful, both in tuning the electronic structure and in defining the thin film morphology, thus would be a promising method to enhance photovoltaic performances of the resulting materials.

Graphical abstract: Solution-processed small molecules with ethynylene bridges for highly efficient organic solar cells

Supplementary files

Article information

Article type
Paper
Submitted
28 May 2016
Accepted
22 Aug 2016
First published
23 Aug 2016

J. Mater. Chem. A, 2016,4, 14720-14728

Solution-processed small molecules with ethynylene bridges for highly efficient organic solar cells

Y. Kan, C. Liu, L. Zhang, K. Gao, F. Liu, J. Chen and Y. Cao, J. Mater. Chem. A, 2016, 4, 14720 DOI: 10.1039/C6TA04442E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements