Issue 30, 2016

Permanently grafted icephobic nanocomposites with high abrasion resistance

Abstract

In this work, a series of copolymer/silica nanocomposites are investigated that exhibit excellent anti-icing behavior and can be covalently grafted to any substrate containing C–H bonds with high durability. The copolymers of interest consist of pendant benzophenone, hexafluorobutyl, and a variety of other comonomers that, under mild UV irradiation, can be covalently grafted on a variety of substrates and generate a densely cross-linked network of polymer and well-dispersed nanoparticles. The robustness of thin films was compared in a series of terpolymers with different acrylic comonomer content. Thin films prepared with tert-butyl ester side groups had less backbone chain scission and, therefore, a greater extent of cross-linking than films prepared with n-butyl ester side groups. The iso-butyl acrylate comonomer promotes photoreaction efficiency in terms of kinetic rate and network robustness, leading to films that can sustain high shear forces and abrasion. The anti-icing capability of the composite was investigated using the impact of supercooled water on different substrates. The composite maintains its icephobicity after modified Taber testing with multiple abrasion cycles using a 300 g load, which demonstrates excellent mechanical resistance. In addition, this study has led to rational design rules for copolymers that maximize permanent attachment of different surface functionalities in terms of both grafting density and reaction kinetics.

Graphical abstract: Permanently grafted icephobic nanocomposites with high abrasion resistance

Supplementary files

Article information

Article type
Paper
Submitted
18 Apr 2016
Accepted
04 Jul 2016
First published
05 Jul 2016

J. Mater. Chem. A, 2016,4, 11719-11728

Permanently grafted icephobic nanocomposites with high abrasion resistance

J. Gao, A. Martin, J. Yatvin, E. White and J. Locklin, J. Mater. Chem. A, 2016, 4, 11719 DOI: 10.1039/C6TA03222B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements