Jump to main content
Jump to site search

Issue 17, 2016
Previous Article Next Article

UV-absorbing cellulose nanocrystals as functional reinforcing fillers in polymer nanocomposite films

Author affiliations

Abstract

Reinforcing, surface-functionalized cellulose nanocrystals (CNCs) with photoactive groups were obtained from wood cellulose fibers using sequential periodate oxidation and a “click-type” reaction between aldehyde groups and p-aminobenzoic acid in an aqueous environment, followed by mechanical disintegration. In the solution state, CNCs exhibited very high UV-absorption properties, especially in UVA and UVB regions (100% absorption was achieved with only 0.1% of CNCs) and high transparency in the visible light region (around 90% with 0.1% of CNCs). The fabricated CNCs functioned as lightweight-reinforcing fillers with high UV-absorption capability when incorporated into a poly(vinyl alcohol) (PVA) matrix. Complete UVA and UVB opacity of the nanocomposite was achieved using 10% of CNCs while simultaneously retaining over 80% transparency over the whole visible light spectrum. In addition, up to 33% and 77% higher tensile strength and modulus, respectively, were achieved using 10% of CNCs compared to pristine PVA. This result presented a unique way to produce multifunctional CNCs to be incorporated into nanocomposite structures instead of metal nanoparticles. These CNCs are supposed to be suitable for many applications requiring high visible light transparency and blocking of UV radiation.

Graphical abstract: UV-absorbing cellulose nanocrystals as functional reinforcing fillers in polymer nanocomposite films

Back to tab navigation

Article information


Submitted
29 Jan 2016
Accepted
29 Mar 2016
First published
29 Mar 2016

This article is Open Access

J. Mater. Chem. A, 2016,4, 6368-6375
Article type
Paper
Author version available

UV-absorbing cellulose nanocrystals as functional reinforcing fillers in polymer nanocomposite films

J. A. Sirviö, M. Visanko, J. P. Heiskanen and H. Liimatainen, J. Mater. Chem. A, 2016, 4, 6368
DOI: 10.1039/C6TA00900J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements