A high energy density full lithium-ion cell based on specially matched coulombic efficiency†
Abstract
Nano-spherical Li-rich cathodes and MnxCo1−xO anodes are synthesized from as-solvothermal MnxCo1−xCO3 (x = 1, 0.8, and 0.5) precursors. Based on the half-cell studies of these materials, Li-rich 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 with a high reversible capacity of 247 mA h g−1 and binary transition metal oxide Mn0.8Co0.2O with a reversible capacity of 759 mA h g−1 are selected respectively as the optimal positive and negative electrodes to construct a full cell. Such an electrode match-up, i.e. Li-rich/Mn0.8Co0.2O full cell (“N-cell”), allows no need for pre-activation of the metal oxide anode. This “N-cell” can deliver a high reversible capacity of 205 mA h g−1 and particularly rather high volumetric energy density, which is about 31% higher than that of a Li-rich/graphite full cell (“T-cell”). The special coulombic efficiency match-up and tailored microstructures and compositions of the electrode materials are all crucial to achieve such a high energy density.