Issue 47, 2016

Fluctuations of a membrane nanotube revealed by high-resolution force measurements

Abstract

Pulling membrane nanotubes from liposomes presents a powerful method to gain access to membrane mechanics. Here we extend classical optical tweezers studies to infer membrane nanotube dynamics with high spatial and temporal resolution. We first validate our force measurement setup by accurately measuring the bending modulus of EPC membrane in tube pulling experiments. Then we record the position signal of a trapped bead when it is connected, or not, to a tube. We derive the fluctuation spectrum of these signals and find that the presence of a membrane nanotube induces higher fluctuations, especially at low frequencies (10–1000 Hz). We analyse these spectra by taking into account the peristaltic modes of nanotube fluctuations. This analysis provides a new experimental framework for a quantitative study of the fluctuations of nanotubular membrane structures that are present in living cells, and now classically used for in vitro biomimetic approaches.

Graphical abstract: Fluctuations of a membrane nanotube revealed by high-resolution force measurements

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2016
Accepted
01 Nov 2016
First published
02 Nov 2016

Soft Matter, 2016,12, 9429-9435

Fluctuations of a membrane nanotube revealed by high-resolution force measurements

F. Valentino, P. Sens, J. Lemière, A. Allard, T. Betz, C. Campillo and C. Sykes, Soft Matter, 2016, 12, 9429 DOI: 10.1039/C6SM02117D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements