Issue 1, 2016

Differential scanning fluorimetry illuminates silk feedstock stability and processability

Abstract

The ability to design and implement silk feedstock formulations for tailored spinning has so far eluded the bioengineers. Recently, the high throughput screening technique of differential scanning fluorimetry (DSF) demonstrated the link between the instability transition temperature (Ti) and the processability of the silk feedstock. Using DSF we screened a large set of chemicals known to affect solvent quality. A multivariate analysis of the results shows that, regardless of the diversity of chemicals, three groupings are significantly distinguishable: G1 = similar to native silk; G2 = largely dominated by electrostatic interactions; and G3 = dominated by chelating interactions. We propose a thermodynamic analysis based on a pre- and post-transition fit to estimate the van't Hoff enthalpies (ΔHv) and the instability temperature (Ti). Our analysis shows that the ΔTi and ΔHv values were distinct: G1 (ΔTi = 0.23 ± 0.2; ΔHv = −159.1 ± 5.6 kcal mol−1), G2 (ΔTi = −7.3 ± 0.7; ΔHv = −191.4 ± 5.5 kcal mol−1), and G3 (ΔTi = −19.9 ± 3.3; ΔHv = −68.8 ± 6.0 kcal mol−1). Our analysis further combined the ΔTi value and the ΔHv value using stability ΔΔG to find that G1 only marginally stabilizes native silks (ΔΔG = −0.15 ± 0.04 kcal mol−1), whereas G2 and G3 destabilize native silk (ΔΔG = 3.8 ± 0.11 and ΔΔG = 3.8 ± 0.3 kcal mol−1, respectively). Here our analysis shows that native silk has a complex multistep transition that is possibly non-cooperative. However, all three groupings also show a direct and cooperative transition with varied stabilization effects. This analysis suggests that native silks are able to sample multiple substates prior to undergoing (or to delay) the final transition. We conclude by hypothesizing that the observed energetic plasticity may be mediated by a fragile packaging of the silk tertiary structure that is readily lost when the solvent quality changes.

Graphical abstract: Differential scanning fluorimetry illuminates silk feedstock stability and processability

Supplementary files

Article information

Article type
Paper
Submitted
14 Aug 2015
Accepted
30 Sep 2015
First published
30 Sep 2015

Soft Matter, 2016,12, 255-262

Differential scanning fluorimetry illuminates silk feedstock stability and processability

C. Dicko, N. Kasoju, N. Hawkins and F. Vollrath, Soft Matter, 2016, 12, 255 DOI: 10.1039/C5SM02036K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements