Issue 2, 2016

Local distortion energy and coarse-grained elasticity of the twist-bend nematic phase

Abstract

The recently discovered twist-bend nematic phase of achiral bent-shaped molecules, NTB, has a doubly degenerate ground-state with a periodically modulated heliconical structure and unusual distortion elasticity, the theoretical description of which is still debated. We show that the NTB phase has the same macroscopic symmetry as another periodic mesophase, the chiral smectic-A, SmA*. Based on this NTB/SmA* analogy, we develop a coarse-grained elastic model for the NTB phase. Adopting one of the existing microscopic NTB elastic models, we calculate the coarse-grained elastic constants, coherence and penetration lengths in terms of a few Frank-like nematic elastic coefficients that can be measured in macroscopic experiments. The same coarse-grained approach, applied to different local elastic models, may provide an efficient experimental test of their validity. We show that the anisotropy of the NTB coarse-grained elasticity is opposite to that of the SmA*, leading probably to different configurations of some of the defects of the “layered” NTB structure. Moreover, we argue that the intrinsic chiral frustration of the NTB phase may be resolved by penetration of the twist field into the bulk through a network of screw dislocations of the NTB pseudo-layers, resulting in a twist-bend analogue of the twist grain boundary phase TGBA.

Graphical abstract: Local distortion energy and coarse-grained elasticity of the twist-bend nematic phase

Supplementary files

Article information

Article type
Paper
Submitted
12 Aug 2015
Accepted
16 Oct 2015
First published
16 Oct 2015

Soft Matter, 2016,12, 574-580

Author version available

Local distortion energy and coarse-grained elasticity of the twist-bend nematic phase

C. Meyer and I. Dozov, Soft Matter, 2016, 12, 574 DOI: 10.1039/C5SM02018B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements