Issue 2, 2016

Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures

Abstract

Viscoelastic polymer solutions flowing through reservoir rocks have been found to improve oil displacement efficiency when the aqueous-phase shear-rate exceeds a critical value. A possible mechanism for this enhanced recovery is elastic turbulence that causes breakup and mobilization of trapped oil ganglia. Here, we apply nuclear magnetic resonance (NMR) pulsed field gradient (PFG) diffusion measurements in a novel way to detect increased motion of disconnected oil ganglia. The data are acquired directly from a three-dimensional (3D) opaque porous structure (sandstone) when viscoelastic fluctuations are expected to be present in the continuous phase. The measured increase in motion of trapped ganglia provides unequivocal evidence of fluctuations in the flowing phase in a fully complex 3D system. This work provides direct evidence of elastic turbulence in a realistic reservoir rock – a measurement that cannot be readily achieved by conventional laboratory methods. We support the NMR data with optical microscopy studies of fluctuating ganglia in simple two-dimensional (2D) microfluidic networks, with consistent apparent rheological behaviour of the aqueous phase, to provide conclusive evidence of elastic turbulence in the 3D structure and hence validate the proposed flow-fluctuation mechanism for enhanced oil recovery.

Graphical abstract: Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures

Article information

Article type
Paper
Submitted
15 Jul 2015
Accepted
07 Oct 2015
First published
07 Oct 2015

Soft Matter, 2016,12, 460-468

Author version available

Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures

J. Mitchell, K. Lyons, A. M. Howe and A. Clarke, Soft Matter, 2016, 12, 460 DOI: 10.1039/C5SM01749A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements