Issue 115, 2016, Issue in Progress

Layer-by-layer surface decoration of electrospun nanofibrous meshes for air–liquid interface cultivation of epidermal cells

Abstract

Multilayered assembly of hydrophilic polymers is used to decorate electrospun nanofibrous mats for the air–liquid interface cultivation of epidermal cells. ε-Caprolactone is ring-opening polymerized into carboxyl-terminated poly(ε-caprolactone) (PCL) and subsequently conjugated with poly(ethyleneimine) (PEI) in order to prepare the PCL–PEI block copolymers. The electrospun PCL–PEI nanofibers are chemically conjugated with multivalent poly(ethyeleneglycol) (PEG) chains, and PEI is chemically tethered to the PEG layers in order to further decorate the surface with multiple layers of PEG. The layered PEG is characterized using both thermal properties and direct visualization of the whole mats with fluorescence labeling, which exhibit escalating levels of PEG content with increasing numbers of PEG layering processes. The PCL–PEI nanofibers with PEG multilayers exhibit superior water swelling rates compared with unmodified mats and have high water retaining behaviors for prolonged periods without additional water supply in a PEG layer-dependent manner. When epidermal cells are cultivated on the PEG-multilayered mats without a continuous supply of the cell culture medium, the viability is maintained for 48 h and gradually decreases after 48 h. The epidermis-specific genes are highly expressed in cells cultivated on the PEG-multilayered mats in comparison with those on an insert well or unmodified mats, which is confirmed by qualitative real-time polymerase chain reaction and immunocytochemical staining of total keratin. Thus, PEG-multilayered nanofibrous mats can be a novel cell culture matrix for cell culture systems where the cell cultivation conditions require air–liquid interfaces.

Graphical abstract: Layer-by-layer surface decoration of electrospun nanofibrous meshes for air–liquid interface cultivation of epidermal cells

Supplementary files

Article information

Article type
Paper
Submitted
19 Sep 2016
Accepted
14 Nov 2016
First published
25 Nov 2016

RSC Adv., 2016,6, 114061-114068

Layer-by-layer surface decoration of electrospun nanofibrous meshes for air–liquid interface cultivation of epidermal cells

Y. J. Son, H. S. Kim and H. S. Yoo, RSC Adv., 2016, 6, 114061 DOI: 10.1039/C6RA23287F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements