Issue 91, 2016

Enhanced SWIR absorption in chemical bath deposited PbS thin films alloyed with thorium and oxygen

Abstract

We report on chemically deposited thin films of PbS alloyed with thorium. Control over the thorium content in the films was achieved by lowering the solution pH and compensating by adding tri sodium citrate as a co-complexant. Homogeneous distribution of thorium was achieved, accompanied by substantial oxygen content, up to concentrations of 9 at% thorium and 20 at% oxygen. Regardless of these relatively high concentrations, a single phase of alloyed PbS was found in X-ray and electron diffraction, indicating complete solubility of the species within the lattice. Physical properties such as the optical band gap and transmission spectra showed a strong dependence on thorium content due to chemical variations and size dependent quantum confinement. This new system is a promising candidate for electro-optic applications due to ease of band-gap tuning and enhanced optical absorption in the short wave infrared (SWIR) range.

Graphical abstract: Enhanced SWIR absorption in chemical bath deposited PbS thin films alloyed with thorium and oxygen

Supplementary files

Article information

Article type
Paper
Submitted
23 Aug 2016
Accepted
06 Sep 2016
First published
06 Sep 2016
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2016,6, 88077-88084

Enhanced SWIR absorption in chemical bath deposited PbS thin films alloyed with thorium and oxygen

T. Templeman, M. Shandalov, E. Yahel, V. Ezersky, G. Sarusi and Y. Golan, RSC Adv., 2016, 6, 88077 DOI: 10.1039/C6RA21188G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements