Issue 88, 2016, Issue in Progress

Band and bonding characteristics of N2+ ion-doped graphene

Abstract

We report that the doping of energetic nitrogen cations (N2+) on graphene effectively controls the local N–C bonding structures and the π-band of graphene critically depending on ion energy Ek (100 eV ≤ Ek ≤ 500 eV) by using a combined study of photoemission spectroscopy and density functional theory (DFT) calculations. With increasing Ek, we find a phase transformation of the N–C bonding structures from a graphitic phase where nitrogen substitutes carbon to a pyridinic phase where nitrogen loses one of its bonding arms, with a critical energy Eck = 100 eV that separates the two phases. The N2+-induced changes in the π-band with varying Ek indicate an n-doping effect in the graphitic phase for Ek < Eck but a p-doping effect for the pyridinic graphene for Ek > Eck. We further show that one may control the electron charge density of graphene by two orders of magnitude by varying Ek of N2+ ions within the energy range adopted. Our DFT-based band calculations reproduce the distinct doping effects observed in the π-band of the N2+-doped graphene and provide an orbital origin of the different doping types. We thus demonstrate that the doping type and electron number density in the N2+ ion-doped SLG can be artificially fine-controlled by adjusting the kinetic energy of incoming N2+ ions.

Graphical abstract: Band and bonding characteristics of N2+ ion-doped graphene

Article information

Article type
Paper
Submitted
02 Aug 2016
Accepted
01 Sep 2016
First published
02 Sep 2016

RSC Adv., 2016,6, 84959-84964

Band and bonding characteristics of N2+ ion-doped graphene

H. Park, S. Choi, P. Lee, J. Kim, M. Ryu, K. S. Kim and J. Chung, RSC Adv., 2016, 6, 84959 DOI: 10.1039/C6RA19511C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements