Issue 89, 2016, Issue in Progress

Improved biological phosphorus removal induced by an oxic/extended-idle process using glycerol and acetate at equal fractions

Abstract

The Oxic/Extended-Idle (O/EI) regime is a promising technology for biological phosphorus removal (BPR) from wastewater, but the BPR efficiency might be affected by an insufficient amount of carbon source in raw wastewater. In this study, a novel strategy i.e., using acetate and glycerol at equal fractions as the carbon source, to simultaneously significantly improve BPR efficiency and reduce biomass waste of glycerol was reported. Experimental results showed that BPR efficiency could be enhanced when glycerol was not a dominant substrate, and the best BPR efficiency was 96.6 ± 1.2% when acetate and glycerol were at equal fractions. However, deterioration of BPR was observed when glycerol was the dominant substrate, and the worst BPR efficiency was 58.1 ± 1.8% when glycerol served as the sole carbon source. Fluorescence in situ hybridization analysis demonstrated that more polyphosphate accumulating organisms but less glycogen accumulating organisms were cultured in the activated sludge using acetate and glycerol at equal fractions. Further mechanism investigations revealed that the transformations of polyhydroxyalkanoates and glycogen, and the activities of key enzymes responsible for P removal (such as exopolyphosphatase and polyphosphate kinase) were all affected by the ratio of acetate to glycerol. In addition, the BPR performances between O/EI reactors and the classical anaerobic/oxic (A/O) reactors employing acetate and glycerol at equal fractions and solely glycerol were compared, the results showed that the Gly-fed O/EI reactor could drive better BPR performances than the Gly-fed A/O reactor. These results suggested that glycerol at moderate levels improved BPR, and waste glycerol could be an economical sustainable alternative to avoid carbon source deficiency in raw wastewater.

Graphical abstract: Improved biological phosphorus removal induced by an oxic/extended-idle process using glycerol and acetate at equal fractions

Supplementary files

Article information

Article type
Paper
Submitted
24 Jul 2016
Accepted
05 Sep 2016
First published
05 Sep 2016

RSC Adv., 2016,6, 86165-86173

Improved biological phosphorus removal induced by an oxic/extended-idle process using glycerol and acetate at equal fractions

J. Zhao, D. Wang, X. Li, G. Zeng and Q. Yang, RSC Adv., 2016, 6, 86165 DOI: 10.1039/C6RA18799D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements