C54Si6 heterofullerene as a potential gas sensor for CO, NO, and HCN detection†
Abstract
The adsorption of CO, NO, and HCN molecules on the C54Si6 heterofullerene is investigated on the basis of density functional theory calculations to exploit its potential applications as a gas sensor. The C54Si6 heterofullerene has two highly stable isomers (named isomer-1 and isomer-2). We find that the toxic CO, NO, and HCN molecules are chemically adsorbed on isomer-1 with moderate adsorption energies and apparent charge transfer. The electronic properties of isomer-1 are significantly influenced by the CO, NO, and HCN adsorption, especially its electric conductivity. The recovery time of the isomer-1 sensor for CO, NO, and HCN at room temperature is estimated to be short due to the medium (optimal) adsorption energies, indicating that isomer-1 (i.e. the most stable configuration) of C54Si6 heterofullerene should be a good CO, NO, and HCN sensor. Similar analysis indicates that the isomer-2 of C54Si6 heterofullerene is a potential efficient gas sensor for NO detection.