Issue 84, 2016, Issue in Progress

Low-temperature CO oxidation over manganese, cobalt, and nickel doped CeO2 nanorods

Abstract

Surface active sites such as oxygen vacancies, Ce3+ ions, and unsaturated coordinated sites on nano ceria (CeO2) are significant in catalytic oxidation reactions. The recent development in nanoengineered CeO2 made a pathway to extend its use in various catalytic applications. In this study, transition metals (Mn2+, Ni2+, and Co2+) doped CeO2 nanorods (NRs) were prepared by hydrothermal method and tested towards CO oxidation. Furthermore, the samples were characterized by various physicochemical techniques, namely, TEM and HR-TEM, SEM-EDX, XRD, ICP-OES, BET surface area, Raman spectroscopy, XPS, and H2-TPR. The results demonstrated that the incorporation of dopants greatly enhances the surface defective sites (Ce3+ ions and a high degree of surface roughness) and redox properties of CeO2 NRs and thereby improved catalytic activity. Especially, the Co–CeO2 NR catalyst exhibited better CO conversion (T50 ∼ 145 °C) when compared to pure CeO2 NR (T50 ∼ 312 °C).

Graphical abstract: Low-temperature CO oxidation over manganese, cobalt, and nickel doped CeO2 nanorods

Supplementary files

Article information

Article type
Paper
Submitted
25 May 2016
Accepted
11 Aug 2016
First published
17 Aug 2016

RSC Adv., 2016,6, 80541-80548

Low-temperature CO oxidation over manganese, cobalt, and nickel doped CeO2 nanorods

D. Jampaiah, P. Venkataswamy, V. E. Coyle, B. M. Reddy and S. K. Bhargava, RSC Adv., 2016, 6, 80541 DOI: 10.1039/C6RA13577C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements