A sensitive 2D plasmon ruler based on Fano resonance
Abstract
In this paper, we designed a 2D distance and rotation angle plasmon ruler based on Fano resonance of a trimer nanostructure, which consists of a concentric square nanoring–disk and an outside nanorod (CSRDR). The Fano dip energy and depth are fairly sensitive to the nanometer-scale displacements and rotations, when the nanodisk moves in all direction and rotates around its center. When the symmetry of the nanoring is broken, we can identify the moving and rotating direction of the nanodisk more accurately. We use the CSRDR nanostructure which supports a narrow line-width as a 2D plasmon ruler, which can enhance the sensitivity of a plasmon ruler significantly.