Issue 65, 2016, Issue in Progress

ZIF-8 derived bimodal carbon modified ZnO photocatalysts with enhanced photocatalytic CO2 reduction performance

Abstract

The use of ZnO photocatalysts is usually limited by their low specific surface area, low visible light absorption capacity and inferior photochemical stability. In this report, visible-light responsive porous ZnO photocatalysts were fabricated by calcining pre-synthesized ZIF-8 (a kind of zeolitic imidazolate framework) polyhedra as solid precursor in air at suitable calcination temperature. It was showed that the crystallographic structure of ZIF-8 precursor was basically remained up to 300 °C upon calcination, while phase transformation from ZIF-8 to wurtzite ZnO nanocrystals progressively proceeded above 400 °C. Interestingly, special bimodal carbon modifications, that is, simultaneous carbon doping and surface carbon coating, were achieved simultaneously during pyrolysis, which were confirmed by X-ray photoelectron spectroscopy, Fourier transform Raman spectroscopy and electron microscopy. The nitrogen sorption analysis indicated that the high specific surface area and mesoporous texture was partially inherited from highly porous ZIF-8. As a consequence of cooperative textural and carbon modifications, the as-prepared mesoporous ZnO photocatalyst was efficient in both CO2 capture and photocatalytic CO2 reduction towards CH3OH as a typical solar fuel under full-spectrum Xe lamp irradiation. Especially, the 500 °C-calcined sample manifested the highest photocatalytic CO2 reduction activity (0.83 μmol h−1 g−1), which was about six folds higher than that of hydrothermally synthesized ZnO nanorods as reference. Specifically, the superior photocatalytic CO2 reduction performance was associated with the bimodal carbon modification, high specific surface area and porous framework, which contributed to enhanced visible light harvesting, charge transport and CO2 capture.

Graphical abstract: ZIF-8 derived bimodal carbon modified ZnO photocatalysts with enhanced photocatalytic CO2 reduction performance

Article information

Article type
Paper
Submitted
01 May 2016
Accepted
16 Jun 2016
First published
17 Jun 2016

RSC Adv., 2016,6, 59998-60006

ZIF-8 derived bimodal carbon modified ZnO photocatalysts with enhanced photocatalytic CO2 reduction performance

S. Liu, J. Wang and J. Yu, RSC Adv., 2016, 6, 59998 DOI: 10.1039/C6RA11264A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements