Fabrication and high radiation-resistant properties of functionalized carbon nanotube reinforced novolac epoxy resin nanocomposite coatings
Abstract
Carboxyl-functionalized multi-walled carbon nanotube (c-MWCNT) reinforced novolac epoxy resin composite coatings with high radiation-resistant performance were successfully fabricated and investigated. Well-dispersed c-MWCNTs were prepared via a γ radiation method. The microstructure, abrasion resistance and impact resistance of the composite coatings with varying content of c-MWCNTs (0 wt%, 0.1 wt%, 0.26 wt%, 0.5 wt%, and 0.75 wt%, 1 wt%) were studied in detail via high-dose Co-60 γ radiation (6000 kGy). All of the results reveal that the addition of c-MWCNTs obviously enhanced the radiation-resistance and comprehensive performance of the composite coatings. 0.75 wt% c-MWCNTs was the optimum content. The process and mechanism were generally discussed. The resulting composite coatings can be widely applied in nuclear power plants and other radiation environments.

Please wait while we load your content...