Issue 54, 2016, Issue in Progress

Diffusion kinetics of gold in TiO2 nanotube arrays for formation of Au@TiO2 nanotube arrays

Abstract

A simple approach is presented to form Au@TiO2 nanotube arrays. This approach consists of the formation of pure TiO2 nanotube arrays by a two-step anodization process, the coating of a Au nanofilm on the top of the pure TiO2 nanotube arrays, and the heat treatment of the TiO2 nanotube arrays coated with the Au nanofilm. The heat treatment leads to the diffusion of Au atoms into the TiO2 nanotube arrays, resulting in the formation of Au nanocrystals on the outer surface of the TiO2 nanotubes. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy are used to characterize the microstructural evolution of the Au@TiO2 nanotube arrays, which reveals the phase change of TiO2 from amorphous phase to anatase phase. The kinetics of the migration of Au atoms into the TiO2 nanotube arrays is studied. The diffusivity for the diffusion of Au atoms on the outer surface of the TiO2 nanotubes is in the range of 4.14–19.4 × 10−18 m2 s−1 for temperature in the range of 400–500 °C. The activation energy for the migration/diffusion of Au on the outer surface of the TiO2 nanotubes in the temperature range of 400 to 500 °C is 67.2 kJ mol−1. The growth of Au nanocrystals on the surface of the TiO2 nanotubes can be described as a first order reaction.

Graphical abstract: Diffusion kinetics of gold in TiO2 nanotube arrays for formation of Au@TiO2 nanotube arrays

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2016
Accepted
10 May 2016
First published
11 May 2016

RSC Adv., 2016,6, 48580-48588

Diffusion kinetics of gold in TiO2 nanotube arrays for formation of Au@TiO2 nanotube arrays

W. Zhang, Y. Liu, D. Zhou, J. Wen, L. Zheng, W. Liang and F. Yang, RSC Adv., 2016, 6, 48580 DOI: 10.1039/C6RA08801E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements