High capacitive amorphous barium nickel phosphate nanofibers for electrochemical energy storage†
Abstract
Ultrafine amorphous BaxNi3−x(PO4)2 (0 < x < 3) nanofibers are synthesized for the first time through a facile cation exchange reaction method at room temperature. Both the phase transformation and growing process of the nanofibers are systematically investigated. A dramatic morphology transformation from Ba3(PO4)2 flakes to BaxNi3−x(PO4)2 nanofibers with the addition of Ni2+ ions is observed. The as-prepared nanofiber material shows a diameter less than 10 nanometers and length of several micrometers. The material possesses a BET surface area of 64.8 m2 g−1. When it is used as a supercapacitor electrode material, specific capacitances as high as 1058 F g−1 at 0.5 A g−1 and 713 F g−1 at 5 A g−1 are achieved, indicating the promising energy storage property of this material.